organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-[(2,3,5,6-Tetramethyl-pphenylene)dimethylene]bis[2-chloro-N-(2-chloroethyl)ethanamine]

Guang-Zhou Wang, Ya-Yun Zhuang and Cheng-He Zhou*

Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 1 July 2009; accepted 6 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.134; data-to-parameter ratio = 22.8.

The title molecule, C₂₀H₃₂Cl₄N₂, lies on an inversion center. A weak intramolecular C-H···N hydrogen bond may, in part, influence the conformation of the molecule.

Related literature

For a related crystal structure, see: Yin et al. (2006). For general background to the pharmacological activity of nitrogen mustards, see: Rachid et al. (2007); Duan et al. (2008); Zhou et al. (2009); Zhuang et al. (2008).

Experimental

Crystal data

$C_{20}H_{32}Cl_4N_2$
$M_r = 442.29$
Monoclinic, $P2_1/c$
a = 13.6694 (14) Å
b = 9.751 (1) Å
<i>c</i> = 8.3997 (8) Å
$\beta = 93.695 \ (2)^{\circ}$

V = 1117.27 (19) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.54 \text{ mm}^{-1}$ T = 298 K $0.16 \times 0.12 \times 0.10 \ \mathrm{mm}$

Data collection

```
Bruker SMART CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\rm min} = 0.919, T_{\rm max} = 0.948
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	120 parameters
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
2732 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

13369 measured reflections

 $R_{\rm int} = 0.031$

2732 independent reflections

2283 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1C\cdots N1$	0.96	2.43	3.159 (3)	133

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

(SWUB2006018, We thank Southwest University XSGX0602) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2858).

References

- Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duan, J. X., Jiao, H., Kaizerman, J., Stanton, T. & Evans, J. W. (2008). J. Med. Chem. 51, 2412-2420.
- Rachid, Z., Brahimi, F., Qiu, Q., Williams, C., Hartley, J. M., Hartley, J. A. & Jean-Claude, B. J. (2007). J. Med. Chem. 50, 2605-2608.
- Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yin, L.-N., Liu, Q.-X., Wu, X.-M., Cheng, F.-J. & Guo, J.-H. (2006). Acta Cryst. E62, o2510-o2511.
- Zhou, C. H., Gan, L. L., Zhang, F. F., Zhang, Y. Y., Wang, G. Z., Jin, L. & Geng, R. X. (2009). Sci. China Ser. Chem. 52, 415-458.
- Zhuang, Y. Y., Zhou, C. H., Wang, Y. F. & Li, D. H. (2008). Chin. Pharm. J. 43, 1281-1287.

supplementary materials

Acta Cryst. (2009). E65, o1850 [doi:10.1107/S1600536809026300]

N,*N*'-[(2,3,5,6-Tetramethyl-*p*-phenylene)dimethylene]bis[2-chloro-*N*-(2-chloroethyl)ethanamine]

G.-Z. Wang, Y.-Y. Zhuang and C.-H. Zhou

Comment

Nitrogen mustards such as chlorambucil and melphalan are cytotoxic chemotherapy agents, which are widely used in the treatment of a variety of malignant diseases. As bifunctional DNA-alkylating agents, nitrogen mustards are able to crosslink cellular DNA and thereby interfere with the DNA replication (Rachid *et al.*, 2007; Duan *et al.*, 2008; Zhuang *et al.*, 2008; Zhou *et al.*, 2009). The title compound (I), was obtained by the chlorination of the corresponding diol. Here we present the crystal structure of (I) (Fig. 1).

The title molecule lies on an inversion center. A weak intramolecular C—H···N hydrogen bond may, in part, influence the conformation of the molecule.

Experimental

To a stirred solution of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene (6.40g, 20mmol) in absolute alcohol (30mL) at 348K potassium carbonate (5.53g, 40mmol) and 2,2'-azanediyldiethanol (4.21g, 40mmol) were added. The progress of the reaction was monitored by TLC. The mixture was filtered to remove the inorganic salts, the solvent was concentrated under reduced pressure and recrystallization from absolute alcohol gave the intermediate2,2',2",2"'-(2,3,5,6-tetramethyl-*p*-phenylene)bis (methylene) bis (azanetriyl)tetraethanol (Yield: 5.23g, 71.0%; white solid; Mp., 417-418K). Sulfonyl chloride (40mL) was added dropwise to the intermediate (3.68g, 10mmol) in an ice-salt bath and then the mixture was stirred slowly at gentle reflux for three hours. Sulfonyl chloride was removed under reduced pressure, after cooling, water was added cautiously, and then the mixture was neutralized with NaHCO₃. The suspension was filtered and washed with chloroform. The organic layer was washed with water, dried over anhydrous Na₂SO₄ and the solvent was removed in vacuo. The resulting residue was recrystallized from chloroform to give the title compound (Yield: 3.83g, 86.7%; white solid; Mp. 389-340K).

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl) with $U_{iso}(H) = 1.2U_{eq}(C)$ (aromatic and methylene C) or $1.5U_{eq}(C)$ (methyl C).

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) -x, -y, -z+1].

N,*N*'-[(2,3,5,6-Tetramethyl-*p*-phenylene)dimethylene]bis[2- chloro-*N*-(2-chloroethyl)ethanamine]

Crystal data	
C ₂₀ H ₃₂ Cl ₄ N ₂	$F_{000} = 468$
$M_r = 442.29$	$D_{\rm x} = 1.315 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4998 reflections
a = 13.6694 (14) Å	$\theta = 2.6 - 28.0^{\circ}$
b = 9.751 (1) Å	$\mu = 0.54 \text{ mm}^{-1}$
c = 8.3997 (8) Å	T = 298 K
$\beta = 93.695 \ (2)^{\circ}$	Block, white
$V = 1117.27 (19) \text{ Å}^3$	$0.16 \times 0.12 \times 0.10 \text{ mm}$
<i>Z</i> = 2	

Data collection

Bruker SMART CCD diffractometer	2732 independent reflections
Radiation source: fine-focus sealed tube	2283 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 298 K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick,1996)	$h = -17 \rightarrow 17$
$T_{\min} = 0.919, T_{\max} = 0.948$	$k = -12 \rightarrow 12$
13369 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.134$	$w = 1/[\sigma^2(F_o^2) + (0.0809P)^2 + 0.1826P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
2732 reflections	$\Delta \rho_{max} = 0.46 \text{ e} \text{ Å}^{-3}$
120 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Primary methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.12764 (15)	0.2248 (2)	0.6112 (3)	0.0550 (5)
H1A	0.1026	0.2650	0.7046	0.083*
H1B	0.1296	0.2930	0.5290	0.083*
H1C	0.1926	0.1906	0.6366	0.083*
C2	0.06149 (12)	0.10771 (19)	0.5531 (2)	0.0396 (4)
C3	-0.03006 (12)	0.13651 (18)	0.4753 (2)	0.0400 (4)
C4	-0.06146 (16)	0.2853 (2)	0.4533 (3)	0.0578 (5)
H4A	-0.0419	0.3364	0.5477	0.087*
H4B	-0.1314	0.2897	0.4345	0.087*
H4C	-0.0309	0.3237	0.3637	0.087*
C5	0.09103 (12)	-0.02818 (19)	0.57881 (19)	0.0380 (4)
C6	0.18937 (12)	-0.0575 (2)	0.6671 (2)	0.0426 (4)
H6A	0.1939	-0.0056	0.7658	0.051*
H6B	0.1927	-0.1541	0.6944	0.051*
C7	0.27229 (13)	-0.08753 (18)	0.4172 (2)	0.0381 (4)
H7A	0.2054	-0.1096	0.3803	0.046*
H7B	0.3099	-0.1720	0.4238	0.046*
C8	0.31611 (16)	0.0100 (2)	0.3029 (2)	0.0476 (4)
H8A	0.3821	0.0342	0.3425	0.057*
H8B	0.2774	0.0934	0.2952	0.057*
C9	0.36606 (12)	-0.04271 (19)	0.6687 (2)	0.0403 (4)
H9A	0.4158	-0.0715	0.5986	0.048*
H9B	0.3577	-0.1159	0.7448	0.048*
C10	0.40134 (13)	0.0836 (2)	0.7575 (2)	0.0454 (4)
H10A	0.4551	0.0592	0.8332	0.055*
H10B	0.3487	0.1199	0.8171	0.055*
N1	0.27367 (9)	-0.02246 (15)	0.57401 (16)	0.0353 (3)
Cl1	0.31962 (4)	-0.06609 (6)	0.10972 (6)	0.0624 (2)
C12	0.44162 (4)	0.21356 (5)	0.62479 (7)	0.05813 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic alsplacement parameters (A	Atomic	displa	acement	parameters	(Å ²
-----------------------------------	--------	--------	---------	------------	-----------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0412 (10)	0.0543 (12)	0.0691 (14)	-0.0048 (8)	0.0002 (9)	-0.0143 (10)
C2	0.0307 (8)	0.0500 (10)	0.0387 (9)	-0.0023 (7)	0.0059 (6)	-0.0025 (7)
C3	0.0325 (8)	0.0471 (10)	0.0412 (9)	0.0009 (7)	0.0081 (7)	0.0014 (7)
C4	0.0443 (11)	0.0506 (11)	0.0779 (15)	0.0040 (8)	0.0004 (10)	0.0066 (10)

supplementary materials

C5	0.0279 (8)	0.0535 (10)	0.0329 (8)	0.0005 (7)	0.0044 (6)	0.0014 (7)
C6	0.0319 (8)	0.0623 (11)	0.0336 (8)	-0.0002 (7)	0.0028 (6)	0.0061 (8)
C7	0.0364 (8)	0.0440 (9)	0.0341 (8)	-0.0054 (7)	0.0033 (6)	-0.0018 (7)
C8	0.0630 (12)	0.0471 (10)	0.0329 (9)	-0.0063 (9)	0.0049 (8)	-0.0025 (8)
С9	0.0309 (8)	0.0485 (10)	0.0410 (9)	0.0037 (7)	-0.0019 (7)	0.0027 (7)
C10	0.0373 (9)	0.0608 (12)	0.0376 (9)	-0.0038 (8)	-0.0024 (7)	-0.0015 (8)
N1	0.0272 (6)	0.0470 (8)	0.0316 (7)	-0.0005 (5)	0.0007 (5)	-0.0014 (6)
C11	0.0788 (4)	0.0759 (4)	0.0331 (3)	-0.0251 (3)	0.0084 (2)	-0.0071 (2)
C12	0.0622 (3)	0.0514 (3)	0.0611 (3)	-0.0097 (2)	0.0064 (2)	-0.0031 (2)
Geometric J	parameters (Å, °)					
C1—C2		1.518 (3)	С6—	-H6B	0.9	700
C1—H1A		0.9600	С7—	-N1	1.40	51 (2)
C1—H1B		0.9600	С7—	-C8	1.50	04 (2)
C1—H1C		0.9600	С7—	-H7A	0.97	700
C2—C5		1.398 (3)	С7—	-H7B	0.97	700
C2—C3		1.402 (2)	C8—	-Cl1	1.78	874 (19)
C3—C5 ⁱ		1.403 (2)	C8—	-H8A	0.9	700
C3—C4		1.521 (3)	C8—	-H8B	0.9	700
C4—H4A		0.9600	С9—	-N1	1.40	52 (2)
C4—H4B		0.9600	С9—	-C10	1.503 (3)	
C4—H4C		0.9600	С9—	-H9A	0.9	700
C5–C3 ⁱ		1.403 (2)	С9—	-H9B	0.9	700
C5—C6		1.520 (2)	C10-		1.79	98 (2)
C6—N1		1.473 (2)	C10-	-H10A	0.9	700
С6—Н6А		0.9700	C10-	-H10B	0.9	700
С2—С1—Н	1A	109.5	N1—	-C7C8	108	58 (14)
С2—С1—Н	1B	109.5	N1—	-С7—Н7А	110	.0
H1A-C1-	-H1B	109.5	C8—	-С7—Н7А	110	.0
С2—С1—Н	10	109.5	N1—	-С7—Н7В	110	.0
H1A—C1—	-H1C	109.5	C8—	-C7—H7B	110	.0
H1B—C1—	H1C	109.5	H7A	—С7—Н7В	108	.4
С5—С2—С	3	120.14 (16)	С7—	-C8—Cl1	110	.64 (13)
С5—С2—С	1	120.23 (16)	С7—	-C8—H8A	109	.5
С3—С2—С	1	119.63 (17)	Cl1–	C8H8A	109	.5
С2—С3—С	5 ⁱ	119.59 (16)	С7—	-C8—H8B	109	.5
С2—С3—С	4	118.96 (16)	Cl1–	C8H8B	109	.5
C5 ⁱ —C3—C	24	121.45 (16)	H8A	—С8—Н8В	108	.1
С3—С4—Н	4A	109.5	N1—	-C9C10	113	.44 (14)
С3—С4—Н	4B	109.5	N1—	-С9—Н9А	108	.9
H4A—C4—	-H4B	109.5	C10-	—С9—Н9А	108	.9
С3—С4—Н	4C	109.5	N1—	-С9—Н9В	108	.9
H4A—C4—	-H4C	109.5	C10-	—С9—Н9В	108	.9
H4B—C4—	-H4C	109.5	H9A	—С9—Н9В	107	.7
С2—С5—С	3 ⁱ	120.26 (15)	С9—	-C10—Cl2	111	.79 (13)
С2—С5—С	6	119.41 (16)	С9—	-C10—H10A	109	.3
C3 ⁱ —C5—C	26	120.33 (16)	Cl2-	C10H10A	109	.3

supplementary materials

N1—C6—C5	113.28 (14)	С9—С10—Н10В	109.3
N1—C6—H6A	108.9	Cl2—C10—H10B	109.3
С5—С6—Н6А	108.9	H10A-C10-H10B	107.9
N1—C6—H6B	108.9	C7—N1—C9	113.11 (13)
С5—С6—Н6В	108.9	C7—N1—C6	114.36 (13)
Н6А—С6—Н6В	107.7	C9—N1—C6	110.96 (13)
C5—C2—C3—C5 ⁱ	-1.1 (3)	C3 ⁱ —C5—C6—N1	110.03 (18)
C1—C2—C3—C5 ⁱ	179.79 (17)	N1—C7—C8—Cl1	178.35 (12)
C5—C2—C3—C4	178.23 (17)	N1—C9—C10—Cl2	-69.96 (18)
C1—C2—C3—C4	-0.9 (3)	C8—C7—N1—C9	-86.20 (18)
C3—C2—C5—C3 ⁱ	1.1 (3)	C8—C7—N1—C6	145.47 (16)
C1—C2—C5—C3 ⁱ	-179.79 (17)	C10—C9—N1—C7	138.52 (16)
C3—C2—C5—C6	-178.45 (15)	C10-C9-N1-C6	-91.42 (19)
C1—C2—C5—C6	0.7 (3)	C5—C6—N1—C7	-54.9 (2)
C2-C5-C6-N1	-70.5 (2)	C5—C6—N1—C9	175.66 (15)

Symmetry codes: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1C…N1	0.96	2.43	3.159 (3)	133

